Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6693): eadl2528, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452047

RESUMEN

Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.


Asunto(s)
Aminoácidos , Proteínas , Proteínas/química , ADN/química , Cristalografía
2.
J Phys Chem Lett ; 14(26): 6135-6142, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37364284

RESUMEN

Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.


Asunto(s)
Cantaxantina , Carotenoides , Carotenoides/química , Análisis Espectral/métodos , Proteínas Bacterianas/química , Luz
3.
Microorganisms ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144332

RESUMEN

Carotenoids are crucial photosynthetic pigments utilized for light harvesting, energy transfer, and photoprotection. Although most of the enzymes involved in carotenoid biosynthesis in chlorophototrophs are known, some are yet to be identified or fully characterized in certain organisms. A recently characterized enzyme in oxygenic phototrophs is 15-cis-zeta(ζ)-carotene isomerase (Z-ISO), which catalyzes the cis-to-trans isomerization of the central 15-15' cis double bond in 9,15,9'-tri-cis-ζ-carotene to produce 9,9'-di-cis-ζ-carotene during the four-step conversion of phytoene to lycopene. Z-ISO is a heme B-containing enzyme best studied in angiosperms. Homologs of Z-ISO are present in organisms that use the multi-enzyme poly-cis phytoene desaturation pathway, including algae and cyanobacteria, but appear to be absent in green bacteria. Here we confirm the identity of Z-ISO in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 by showing that the protein encoded by the slr1599 open reading frame has ζ-carotene isomerase activity when produced in Escherichia coli. A Synechocystis Δslr1599 mutant synthesizes a normal quota of carotenoids when grown under illumination, where the photolabile 15-15' cis double bond of 9,15,9'-tri-cis-ζ-carotene is isomerized by light, but accumulates this intermediate and fails to produce 'mature' carotenoid species during light-activated heterotrophic growth, demonstrating the requirement of Z-ISO for carotenoid biosynthesis during periods of darkness. In the absence of a structure of Z-ISO, we analyze AlphaFold models of the Synechocystis, Zea mays (maize), and Arabidopsis thaliana enzymes, identifying putative protein ligands for the heme B cofactor and the substrate-binding site.

4.
Methods Enzymol ; 674: 137-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36008006

RESUMEN

Carotenoids are important photosynthetic pigments that play key roles in light harvesting and energy transfer, photoprotection, and in the folding, assembly, and stabilization of light-harvesting pigment-protein complexes. The genetically tractable purple phototrophic bacteria have been useful for investigating the biosynthesis and function of photosynthetic pigments and cofactors, including carotenoids. Here, we give an overview of the roles of carotenoids in photosynthesis and of their biosynthesis, focusing on the extensively studied purple bacterium Rhodobacter sphaeroides as a model organism. We provide detailed procedures for manipulating carotenoid biosynthesis, and for the preparation and analysis of the light-harvesting and photosynthetic reaction center complexes that bind them. Using appropriate examples from the literature, we discuss how such approaches have enhanced our understanding of the biosynthesis of carotenoids and the photosynthesis-related functions of these fascinating molecules.


Asunto(s)
Carotenoides , Rhodobacter sphaeroides , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Proteobacteria/genética , Proteobacteria/metabolismo , Rhodobacter sphaeroides/metabolismo
5.
R Soc Open Sci ; 9(5): 211903, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35573041

RESUMEN

(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.

6.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672948

RESUMEN

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Asunto(s)
Péptidos/química , Proteínas/química , Temperatura , Estructura Molecular , Estabilidad Proteica , Semiconductores , Análisis Espectral , Xantófilas/química
7.
J Biol Chem ; 293(18): 6672-6681, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29559557

RESUMEN

Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo-designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b-induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hemoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Dicroismo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Unión al Hemo , Hemoproteínas/química , Proteínas de Transporte de Membrana/química , Metilaminas/metabolismo , Modelos Moleculares , Oxidorreductasas N-Desmetilantes/metabolismo , Periplasma/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Estabilidad Proteica , Transporte de Proteínas , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...